Complex analysis on o-minimal structures

by Kobi Peterzil

February-March 2022

1 Topological fields

1.1 Topological fields

Definition 1.1. A topological field is a field F together with a topology τ on F for which the sum, product, additive and multiplicative inverse functions are continuous.

Properties A few properties:

- The space (F, τ) is Hausdorff.
- If (F, τ) is compact, then F is finite.
- $\quad x \mapsto x^{-1}$ has no limit at 0 .
- There exists a non-empty open proper subset of F.

Example 1.2. The following are topological fields.

- Finite fields with the discrete topology.
- Linearly ordered fields with the order topology.
- If F is any field, then the field $F\left[\left[t^{\mathbb{Z}}\right]\right]=F((t))$ of formal Laurent series with the valuation topology (in fact any valued field). Note that $F \subseteq F((t))$ is closed, and that the induced topology on F is the discrete topology.
- Let (F, τ) be a topological field, and consider an algebraic extension $F[\alpha]$. Then $F[\alpha] \simeq F^{n}$ as a vector space over F. The product topology then induces a topological field.

1.2 Differentiability in topological fields

We fix a topological field (F, τ).
Definition 1.3. Let U be open, let $x_{0} \in U$ and let $f: U \longrightarrow F$. Then f is said differentiable if there exists a $d \in F$ such that

$$
\lim _{\substack{h \rightarrow 0 \\ h \neq 0}} \frac{f\left(x_{0}+h\right)-f(t)}{h}=d .
$$

The number d is unique, and we write $d:=f^{\prime}\left(x_{0}\right)$.
This is preserved by sums, products, quotients, composition and so on. Moreover differentiability implies continuity. We also have the Cauchy-Riemann equations.

We will next consider more specific contexts: o-minimality in particular.

1.3 The o-minimal case

Let $\mathcal{R}=(R,+, \times,<,-)$ be o-minimal and write $\mathcal{K}=(K,+, \times)$ for its algebraic closure $K=$ $R[\sqrt{-1}]$. Any K-rational function is differentiable.

Consider the case of \mathbb{R}_{an}. If $h \in \mathbb{C}[[z]]$ converges in a neighborhood of zome $z_{0} \in \mathbb{C}$, then there is some open $U \ni z_{0}$ such that $h \upharpoonleft U$ is definable in $\mathbb{R}_{\text {an }}$.

On \mathbb{C}, the function exp is not definable in any o-minimal expansion of \mathbb{R}. Fact: let U be open such that $\exp \upharpoonleft U$ is definable in some o-minimal expansion of \mathbb{R}. Then the imaginary part of U must be bounded. Indeed, defining $g(z)=\frac{\exp (z)}{|\exp (z)|}=\mathrm{e}^{i \operatorname{Im}(z)}$ on U, and the set $\{(0, y) \in U \cap\{0\} \times i \mathbb{R}$: $\left.\mathrm{e}^{i y}=1\right\} \subseteq 2 \pi \mathbb{Z}$ (project onto the y-axis if you must) must be bounded by o-minimality. Conversely, in $\mathbb{R}_{\mathrm{an}, \exp }$, each such $\exp 1 U$ is definable whenever U is definable. In particular \exp is defined and injective on the strip of $z \in \mathbb{C}$ with $\operatorname{Im}(z) \in[-\pi, \pi)$. So log: $\mathbb{C} \backslash \mathbb{R} \geqslant 0$ is definable.

Question 1. Assume $V \subseteq \mathbb{R}^{n}$ is open and $f: V \longrightarrow \mathbb{R}^{n}$ is real-analytic and definable in some ominimal expansion of \mathbb{R}, then when can f be extended definably to some $\hat{f}: U \longrightarrow \mathbb{C}^{n}$ which is complex-analytic, where $U \subseteq \mathbb{C}^{n}$ is open? This is open for f definable in $\mathbb{R}_{\text {an, exp }}$.

Answer 1. Tobias Kaiser proved the result for unary functions definable in $\mathbb{R}_{\text {an, } \exp }$. Andre Opris shows in his PhD thesis that this is the case for a large class of functions called restricted exp-loganalytic functions, which is a proper subset of the set of definable functions in $\mathbb{R}_{\mathrm{an}, \exp }$.

1.4 Diverging series

Consider the field $\mathcal{R}_{\text {Pui }}=\bigcup_{n>0} \mathbb{R}\left(\left(t^{\frac{1}{n}}\right)\right)$ of formal Puiseux series over \mathbb{R}, where t is a positive infinitesimal. The field $\mathcal{R}_{\text {Pui }}$ is real-closed. Let $\mathcal{K}_{\text {Pui }}$ denote its algebraic closure. For all $h \in \mathbb{R}\left[\left[z_{1}, \ldots\right.\right.$, $\left.\left.z_{n}\right]\right]$ (formal power series), we have a function $h:(-t, t)^{n} \longrightarrow \mathcal{R}_{\text {Pui }}$. Write \mathcal{R} for the structure $\left(\mathcal{R}_{\text {Pui }},+, \times,<,(h)_{h \in \mathbb{R}\left[\left[z_{1}, \ldots, z_{n}\right]\right]}\right)$. Robinson and Lipshitz showed that this is o-minimal. Any such function $h \in \mathbb{R}\left[\left[z_{1}\right]\right]$ can be dedinably extended to $(-t, t)^{2} \subseteq \mathcal{K}_{\text {Pui }}$.

2 Topological analysis

We fix an o-minimal expansion \mathcal{R} of a real-closed field R, and write K for the algebraic closure of R.

2.1 Winding numbers

Everything will be definable.
Definition 2.1. A definable closed curve in R^{2} is a definable and continuous $\sigma:[0,1] \longrightarrow R^{2}$ with $\sigma(0)=\sigma(1)$. We sometimes write $\mathcal{C}:=\sigma([0,1])$. The curve σ is called simple if $\sigma_{[0 ; 1)}$ is injective.

Example 2.2. $\mathbb{S}^{1}:=\left\{z \in K:|z|^{2}=1\right\}$. We fix some simple counter-clockwise semi-algebraic parametrization s_{0} of \mathbb{S}^{1}.

Given any closed curve (σ, \mathcal{C}) and a definable continuous map $f: \mathcal{C} \longrightarrow \mathbb{S}^{1}$. We have maps

$$
[0,1) \xrightarrow{\sigma} \mathcal{C} \xrightarrow{f} \mathbb{S}^{1} \xrightarrow{s_{0}^{\text {inv }}}[0,1)
$$

choosing s_{0} so that $s_{0}(0):=f(\sigma(0))$. Write $\hat{f}:=s_{0}^{\text {inv }} \circ f \circ \sigma:[0,1) \longrightarrow[0,1)$. For simplicity, assume that f is not locally constant anywhere. The only possible discontinuities lie in $\hat{f}^{-1}(\{0\})$, which by o-minimality, is finite. Write $0=a_{0}<\cdots<a_{n-1}<1$ be the discontinuities. We add $a_{n}:=1$ as a point, in order to define the winding number of f as follows. For $i \in\{0, \ldots, n\}$, write

$$
\begin{aligned}
f\left(a_{i}^{+}\right) & :=\lim _{\substack{t \rightarrow a_{i} \\
t>0}} f(t), \\
f\left(a_{i}^{-}\right) & :=\lim _{\substack{t \rightarrow a_{i} \\
t<0}} f(t) .
\end{aligned}
$$

We define the winding number $W_{\mathcal{C}}(f)$ of f as
xample

$$
W_{\mathcal{C}}(f):=\sum_{i=0}^{n-1} f\left(a_{i+1}^{-}\right)-f\left(a_{i}^{+}\right) \in \mathbb{Z}
$$

Example 2.3. Take $f: \mathbb{S}^{1} \longrightarrow \mathbb{S}^{1} ; z \mapsto z^{2}$. Then $W_{\mathbb{S}^{1}}(f)=2$. Also $W_{\mathcal{C}}\left(z \mapsto-z^{2}\right)=2$, and $W_{\mathcal{C}}(z \mapsto$ $\left.z^{-1}\right)=-1$.

Remark 2.4. If $(f(t))_{t \in D}$ is a definable family of continuous functions $\mathcal{C}_{t} \longrightarrow \mathbb{S}^{1}$. Then by ominimality the numbers n_{t} corresponding to n above are bounded, so the definition of $W_{\mathcal{C}}(f)$ can be done uniformly.

Let us give a few properties of those winding numbers.
i. If $f: \mathcal{C} \longrightarrow \mathbb{S}^{1}$ is not surjective, then $W_{\mathcal{C}}(f)=0$.
ii. Let $f, g: \mathcal{C} \longrightarrow \mathbb{S}^{1}$ be definably holomorphic. Assume that f and g are homotopy-equivalent, i.e. there is a continuous $H:[0,1]^{2} \longrightarrow \mathbb{S}^{1}$ with $H(0,-)=f$ and $H(1,-)=g$. Then $W_{\mathcal{C}}(f)=$ $W_{\mathcal{C}}(g)$. This relies on the facts that $[0,1]$ is dedinably connected in R, and that the function $t \mapsto W_{\mathcal{C}}(H(t,-))$ is locally constant.
iii. For continuous definable $f, g: \mathcal{C} \longrightarrow \mathbb{S}^{1}$, we have $W_{\mathcal{C}}(f g)=W_{\mathcal{C}}(f)+W_{\mathcal{C}}(g)$.
iv. If one reverses the parametrization of \mathcal{C}, then $W_{\leftarrow \mathcal{C}}=-W_{\mathcal{C}}$.

Definition 2.5. Let $f: \mathcal{C} \longrightarrow \mathbb{S}^{1}$ be definable and continuous, and let $w_{0} \in K \backslash f(\mathcal{C})$. We want to define the winding number $W_{\mathcal{C}}\left(f, w_{0}\right)$ of f around w_{0}. We define $f_{w_{0}}: \mathcal{C} \longrightarrow \mathbb{S}^{1} ; z \mapsto \frac{f(z)-w_{0}}{\left|f(z)-w_{0}\right|}$, and set $W_{\mathcal{C}}\left(f, w_{0}\right):=W_{\mathcal{C}}\left(f_{w_{0}}\right)$.

2.2 Winding number and K-differentiability

Lemma 2.6. Let $U \subseteq K$ be definable, open and non-empty. Let $f: U \longrightarrow K$ be definable and continuous, and let $z_{0} \in U$ such that f is K-differentiable at z_{0}. If $f^{\prime}\left(z_{0}\right) \neq 0$, then for all sufficiently small circles \mathcal{C} centered at z_{0}, we have $W_{\mathcal{C}}\left(f, f\left(z_{0}\right)\right)=1$.

Proof. Write $d:=f^{\prime}\left(z_{0}\right) \in K^{\times}$. Since $d \neq 0$, there is a $U_{1} \subseteq U$ with $f(z) \neq f\left(z_{0}\right)$ for all $z \in U \backslash\left\{z_{0}\right\}$. So we can consider $h: U_{1} \longrightarrow \mathbb{S}^{1} ; z \mapsto \frac{f(z)-f\left(z_{0}\right)}{\left|f(z)-f\left(z_{0}\right)\right|}$. Also set

$$
k(z):=\frac{d\left(z-z_{0}\right)}{|d|\left|z-z_{0}\right|} .
$$

Note that $W_{\mathcal{C}}(k)=1$ for all circles \mathcal{C} around z_{0}. Since $f^{\prime}\left(z_{0}\right)=d$, for z sufficiently close to z_{0}, the element $\frac{h(z)}{k(z)}$ is close to 1 . In particular, picking a sufficiently small circle \mathcal{C} around z_{0}, the function $\frac{h}{k}: \mathcal{C} \longrightarrow \mathbb{S}^{1}$ is not surjective. So $W_{\mathcal{C}}(h)-W_{\mathcal{C}}(k)=W_{\mathcal{C}}\left(\frac{h}{k}\right)=0$. We conclude that $W_{\mathcal{C}}(f$, $\left.f\left(z_{0}\right)\right)=W_{\mathcal{C}}(h)=W_{\mathcal{C}}(k)=1$.

Write D for the closed unit disk in K, and \mathcal{C} for the unit circle, parametrized counter-clockwise.
Main Lemma. Let $f: D \longrightarrow K$ be definable and K-differentiable on $\operatorname{Int}(D)$. Let $w_{0} \in K \backslash \operatorname{Int}(D)$. We have
i. If $w_{0} \notin f(D)$, then $W_{\mathcal{C}}\left(f, w_{0}\right)=0$.
ii. If $w_{0} \in f(D)$, then $W_{\mathcal{C}}\left(f, w_{0}\right)>0$.
iii. Each connected component of $K \backslash f(\mathcal{C})$ is either contained in or disjoint from $f(D)$.

Example 2.7. We give an example where ii. + iii. fail for a continuous but not K-differentiable f. Let $f(x, y):=\left(x, y^{2}\right)$. So $f(\mathcal{C})$ is an upper arc in K, and $K \backslash f(\mathcal{C})$ has one definably connected component, and has winding number 0 around any element in the $K \backslash f(\mathcal{C})$ including those which lie in $f(D)$.

Proof of the Main Lemma. We first prove i. We can use an homotopy to shrink \mathcal{C} continuously, and as the radius of \mathcal{C} tends to 0 , the curve $f(\mathcal{C})$ is close to $f(0)$, so $f_{w_{0}}$ will not be surjective (it will only cover a small angle). So the winding number of $f_{w_{0}}$ is 0 , hence the result.

Let us now prove ii. Fix a definably connected and open component X of $K \backslash f(\mathcal{C})$ which contains w_{0}. Since $f(D)$ is definably connected (because D is and f is continuous and definable), the point w_{0} is not isolated in X, so $f(D) \cap X$ is infinite. Consider the open set $U: f^{-1}(X)$. We claim that the set

$$
\mathcal{P}:=\left\{z \in U: f^{\prime}(z) \neq 0\right\}
$$

has dimention 2. Indeed assume for contradiction that \mathcal{P} has dimension $\leqslant 1$. Then in particular $Z:=$ $\left\{z \in U: f^{\prime}(z)=0\right\}$ has codimension $\leqslant 1$. But $f \upharpoonleft Z$ has differential 0 everywhere, so partitioning Z, we see that f is locally constant, so takes only finitely many values. So $f(U)$ is finite: contradicting the previous argument.

The statements of the main lemma are first-order, so we can move to a sufficiently saturated elementary extension, and consider a generic point z_{0} in X over \varnothing. Then f is \mathcal{C}^{1} at z_{0} as an \mathcal{R} function. Moreover $J(f)_{z_{0}}$ is invertible (i.e. $f^{\prime}\left(z_{0}\right) \neq 0$), then the inverse function theorem for o minimal structures gives that $f(U) \subseteq X$ contains an open set, whence in particular $f(D) \cap X$ contains an open set.

Pick $w_{1} \in f(D) \cap X$ be generic, so $\operatorname{dim}\left(w_{1} / \varnothing\right)=2$. We claim that $f^{-1}\left(\left\{w_{1}\right\}\right)$ is finite and that f^{\prime} is non-zero on this set. Assume for contradiction that $f^{-1}\left(\left\{w_{1}\right\}\right)$ is infinite. Let $X_{1}:=$ $\left\{w \in f(D) \cap X: f^{-1}(\{w\})\right.$ is infinite $\}$. Then $\operatorname{dim} X_{1}=2$ since it contains the generic point w_{1}. So $f: f^{-1}\left(\left\{w_{1}\right\}\right) \longrightarrow X_{1}$ is surjectve for all such infinite fibers, which is impossible since the dimentin of $f^{-1}\left(\left\{w_{1}\right\}\right)$ is $\leqslant 0$. Assume for contradiction that there is $z \in f^{-1}\left(\left\{w_{1}\right\}\right)$ with $f^{\prime}(z)=0$, and write X_{2} for the set of such z^{\prime} 's. Then again $X_{2}:=\left\{w \in f(D) \cap X: f^{\prime}(z)=0\right\}$ has dimension 2. By definable choice, there is a $Y_{1} \subseteq K$ such that for all $w \in X_{2}$, there is a $y \in Y_{1}$ with $f^{\prime}(y)=0$ and this yields a similar contradiction.

03-02: Lecture 5

Removal of singularities $\grave{\boldsymbol{a}}$ la Riemann. Let U be open and non-empty, let $z_{0} \in U$ and let f : $U \backslash\left\{z_{0}\right\} \longrightarrow K$ be definable, K-differentiable and bounded. Then there is a unique $w_{0} \in K$ such that the extension of f to U with $f\left(z_{0}\right)=w_{0}$ is K-differentiable.

Proof. Set $h(z):=\left(z-z_{0}\right) f(z)$ for $z \in U \backslash\left\{z_{0}\right\}$ and $h\left(z_{0}\right)=0$. Since f is bounded, we have $\lim _{0} h=0$, so h is K-differentiable on $U \backslash\left\{z_{0}\right\}$, so by the previous theorem, the function h is K differentiable at z_{0}, with $h^{\prime}\left(z_{0}\right)=\lim _{z_{0}} f$. We then extend f by continuity and see that f is K differentiable at z_{0}.

Using the previous result and the maximum principle, one can prove the following:
Theorem 2.8. If $f: U \longrightarrow K$ is definable and K-differentiable, then f^{\prime} is also K-differentiable.

3 Isolated singularities

We start with an o-minimal fact:
Fact Let U be open and non-empty. Let $g: U \longrightarrow K$ be definable, let $z \in \bar{U}$. Then there is a neighborhood V of z such that $g(V \cap U)$ is not dense in K.
Proof. Assume for contradiction that this is not the case. So for all $w \in K \backslash f\left(\left\{z_{0} \cap U\right\}\right)$ there is a definable path $\gamma:[0 ; 1] \longrightarrow K \backslash\left\{z_{0}\right\}$ converging to z_{0} such that $f \circ \gamma$ tends to w. So $(\gamma, f \circ \gamma)$ tends to $\left(z_{0}, w\right)$. So $\left\{z_{0}\right\} \times\left(K \backslash\left\{z_{0}\right\}\right) \subseteq \overline{f \upharpoonleft U \backslash\left\{z_{0}\right\}} \backslash f$. But this is the frontier of a set of dimension 2, whereas $\left\{z_{0}\right\} \times\left(K \backslash\left\{z_{0}\right\}\right)$ has dimension 2: a contradiction.

We fix an open set U, a point $z_{0} \in U$ and a definable and K-differentiable $f: U \backslash\left\{z_{0}\right\} \longrightarrow K$. Assume that f is not constant around z_{0}. We define the order $\operatorname{Ord}_{z_{0}}(f) \in \mathbb{Z}$ of f at z_{0} as follows. Recall that for sufficiently large $r \in R^{>}$, the number $W_{\mathcal{C}_{r}}(f, 0)$ is constant (where \mathcal{C}_{r} is the circle around z_{0} of radius r). We then define $\operatorname{Ord}_{z_{0}}(f)$ to be that integer.

Case 1: $\boldsymbol{z}_{\mathbf{0}}$ is a removable singularity and $\boldsymbol{f}\left(\boldsymbol{z}_{0}\right)=\mathbf{0}$. Write f for the continuation on U. We have $0 \in \mathcal{D}_{r}:=\operatorname{Conv}\left(\mathcal{C}_{r}\right)$, whence

$$
\operatorname{Ord}_{z_{0}}(f)>0,
$$

by a previous theorem.
Case 2: \boldsymbol{z}_{0} is a removable singularity and $\boldsymbol{f}\left(\boldsymbol{z}_{0}\right) \neq \mathbf{0}$. Again write f for the continuation on U. If $f\left(z_{0}\right) \neq 0$, then we claim that

$$
\operatorname{Ord}_{z_{0}}(f)=0
$$

Indeed shrinking \mathcal{C}_{r} (hence \mathcal{D}_{r}) sufficiently, we can obtain that $f\left(z_{0}\right)$ lie outside of \mathcal{D}_{r}.
Case 3: \boldsymbol{z}_{0} is not removable. In particular f must be unbounded near z_{0}. We claim that

$$
\begin{equation*}
\lim _{z_{0}}|f|=+\infty \tag{3.1}
\end{equation*}
$$

Let V be a neighborhood of z_{0}, let $w_{0} \in K$ and $r_{0} \in R^{>}$such that

$$
\begin{equation*}
\left|f(z)-w_{0}\right|>r_{0} \tag{3.2}
\end{equation*}
$$

for all $z \in V \backslash\left\{z_{0}\right\}$. Set

$$
h(z):=\frac{1}{f(z)-w_{0}}
$$

for all $z \in V \backslash\left\{z_{0}\right\}$. The function h is K-differentiable, and bounded by (3.2). So z_{0} is a removable singularity for h. So $\lim _{z_{0}} h \in K$. We conclude since f is unbounded near z_{0} that $\lim _{z_{0}} h=0$, whenc $\left|\lim _{z_{0}} f\right|=+\infty$.

Let us show that

$$
\operatorname{Ord}_{z_{0}}(f)<0
$$

Set

$$
\eta(z):=\frac{1}{f(z)}
$$

on a [épointé] neighborhood X of z_{0}. By (3.1), we can extend η to z_{0} by setting $\eta\left(z_{0}\right):=0$. Now we know that $W_{\mathcal{C}_{r}}(\eta, 0)>0$, whence $W_{\mathcal{C}_{r}}(f, 0)=0$ for all sufficiently small $r \in R^{>}$(i.e. whenever $\mathcal{C}_{r} \subseteq X$).

Theorem 3.1. Set $n:=\operatorname{Ord}_{z_{0}}(f)$. There is a definable and K-differentiable $g: U \longrightarrow K$ with $g\left(z_{0}\right) \neq$ 0 such that

$$
f(z)=g(z)\left(z-z_{0}\right)^{n}
$$

for all $z \in U \backslash\left\{z_{0}\right\}$.
Proof. Let $r \in R^{>}$be sufficiently small, so $n=W_{\mathcal{C}_{r}}(f, 0)$. Note that $W_{\mathcal{C}_{r}}\left(\left(\mathrm{id}-z_{0}\right)^{n}, 0\right)=n$, so setting $g:=\frac{f}{\left(\mathrm{id}-z_{0}\right)^{n}}$ on $U \backslash\left\{z_{0}\right\}$, we have $W_{\mathcal{C}_{r}}(g, 0)=0$. By the previous trichotomy, the function g can be extended to z_{0} with $g\left(z_{0}\right) \neq 0$; hence the result.

Corollary 3.2. Assume that f is K-differentiable at z_{0} and that $\operatorname{Ord}_{z_{0}}(f) \geqslant 0$. Then $\operatorname{Ord}_{z_{0}}(f):=$ $\min \left\{n \in \mathbb{Z}: f^{(n)}\left(z_{0}\right) \neq 0\right\}$ where $f^{(n)}\left(z_{0}\right) \neq 0$ means that there is an analytic continuation of f such that...

Corollary 3.3. For non-standard $\alpha \in R^{>N}$, "the" function $z \mapsto z^{\alpha}$ cannot be defined as a K differentiable map on a neighborhood of 0 .

4 Taylor series

Let $U \subseteq K$ be a non-empty open definable set, and let $z_{0} \in U$.
From the proof of Theorem 3.1, we deduce:
Theorem 4.1. Let $f: U \longrightarrow K$ be definable and K-differentiable. Then

$$
\forall n \in \mathbb{N}, \operatorname{Ord}_{z_{0}}\left(f-\sum_{k=0}^{n} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(\operatorname{id}-z_{0}\right)^{k}\right)>n
$$

If z_{0} is a pole, then

$$
\forall n \geqslant \operatorname{Ord}_{z_{0}}(f), \operatorname{Ord}_{z_{0}}\left(f-\sum_{k=\operatorname{Ord}_{z_{0}}(f)}^{n} a_{k}\left(\mathrm{id}-z_{0}\right)^{k}\right)>0
$$

for a fixed sequence $\left(a_{\operatorname{Ord}_{z_{0}}(f)}, \ldots\right)$.
Corollary 4.2. The map

$$
f \longmapsto \sum_{k \geqslant 0} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k}
$$

from germs at z_{0} of K-differentiable and definable functions to power series in $K\left[\left[z-z_{0}\right]\right]$ is injective.

Theorem 4.3. Every definable K-differentiable function $f: K \longrightarrow K$ is a polynomial.
Theorem 4.4. If $f: K \backslash\left\{z_{0}, \ldots, z_{n}\right\} \longrightarrow K$ is definable and K-differentiable, then f is a polynomial.

5 Some model theory

Proposition 5.1. Let $\left(f_{t}\right)_{t \in \Gamma}$ be a definable family of K-differentiable functions $K \longrightarrow K$, then there is an $N \in \mathbb{N}$ such that each f_{t} has degree $\leqslant N$.

Question 2. Let $\left(f_{t}\right)_{t \in \Gamma}$ be a definable family of polynomial functions on \mathcal{D}. Is there a uniform bound on the degree of f_{t} ?

Example 5.2. [by A. Piekosz] Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be an arbitrary sequence of complex numbers in $\mathcal{D}_{1 / 2}$ with absolute value $\leqslant 1 / 2$. Define

$$
\begin{aligned}
f: \mathcal{D}_{1 / 2} \times \mathcal{D}_{1 / 2} & \longrightarrow \mathbb{C} \\
(z, w) & \longmapsto \sum_{n \geqslant 1} z^{n}\left(w-a_{1}\right) \cdots\left(w-a_{n}\right) .
\end{aligned}
$$

This is definable in \mathbb{R}_{an}, and for all $n \in \mathbb{N}$, the function $f\left(-, a_{n}\right)$ is a polynomial of degree n. But for $w \notin\left\{a_{n}: n \in \mathbb{N}\right\}$ the function $f(-, w)$ is not a polynomial, so this doesn't give a negative answer to the previous question.

Proposition 5.3. Let $\left(f_{t}\right)_{t \in \Gamma}$ be a definable family of K-differentiable functions on $U_{t} \backslash\left\{z_{t}\right\}$ for open sets $U_{t} \ni z_{t}, t \in \Gamma$. Then there is an $N \in \mathbb{N}$, such that for all $t \in \Gamma$, either f_{t} is locally constant around z_{t} or $\left|\operatorname{Ord}_{z_{t}}\left(f_{t}\right)\right| \leqslant N$.

Proposition 5.4. Let $\left(f_{t}\right)_{t \in \Gamma}$ be a definable family of K-differentiable functions on $U_{t} \backslash\left\{z_{t}\right\}$ for open sets $U_{t} \ni z_{t}, t \in \Gamma$. For $t \in \Gamma$, let

$$
\sum_{k \geqslant-N} a_{k, t}\left(z_{t}\right)\left(z-z_{t}\right)^{k}
$$

be the Laurent series associated to f_{t}, where N is as in the previous proposition. Then the function

$$
t \mapsto a_{k, t}\left(z_{t}\right)
$$

is definable.
Let us now go back to the classical setting $K=\mathbb{C}$. Let \mathcal{C} be a simple closed curve and let f : $U \supseteq \mathcal{C} \longrightarrow K$ have finitely many residues z_{1}, \ldots, z_{n} in $\operatorname{Int}(\operatorname{Hull}(\mathcal{C}))$. ${\operatorname{Recall} \text { that } \operatorname{res}_{z}(f)=a_{-1}(z) \text { in }, ~}_{\text {in }}$ the previous notations. We have $\frac{1}{2 \pi i} \int_{C} f=\operatorname{res}_{z_{1}}(f)+\cdots+\operatorname{res}_{z_{n}}(f)$.

So if $\left(f_{t}\right)_{t \in \Gamma}$ is as above and $\left(\mathcal{C}_{t}\right)_{t \in \Gamma}$ is a definable family of simple closed curves, and $F_{t} \subseteq$ $\operatorname{Conv}\left(\mathcal{C}_{t}\right)$ is finite and uniformly definable, then the function
is also definable.

$$
t \longmapsto \int_{\mathcal{C}_{t}} f_{t}
$$

Theorem 5.5. If $f: K^{n} \longrightarrow K$ is definable and K-differentiable, then f is polynomial.
Proof. For all $\bar{a} \in K^{n-1}$, the function $f(\bar{a},-)$ is polynomial by the one variable corresponding result. By o-minimality, the degrees of corresponding polynomials when \bar{a} ranges in K^{n-1} are bounded by some $d \in \mathbb{N}$. So $f(\bar{x}, y)=\sum_{k=0}^{d} a_{k}(\bar{x}) y^{k}$. Loooking at $\frac{\partial f}{\partial y}$, we can conclude by induction.

In fact, we have a result from Palais (1978) that for any uncountable field F and $f: F^{n} \longrightarrow F$ which is polynomial in each variable, the function f is in fact polynomial.

6 Behavior at boundary points

Assume that $f: U \longrightarrow K$ is definable and K-differentiable on a non-empty open set $U \subseteq K$, and let $z_{0} \in \partial U$ such that $U \cap V$ is simply connected for some neighborhood V of z_{0}. Then $\lim _{z_{0}} f$ exists in $\mathbb{R} \cup\{\infty\}$. Indeed recall that for $f: \mathcal{D} \longrightarrow K$ definable, and non-constant and K-differentiable on $\operatorname{Int}(\mathcal{D})$, then $f^{\mathrm{inv}}(w)$ is finite on $\partial \mathcal{D}$. Indeed assume that f as infinitely many limit points around z_{0}. Then sufficiently close to z_{0}, one can also arrange that f is injective and that it have non-zero derivative. So the inverse map of the restriction will be K-differentiable on an open set. Then $f^{\text {inv }}$ sends an infinite subset of $\mathcal{D}(w)$ to z_{0}, so $f^{\text {inv }}$ must be constant: a contradiction.

Question 3. Assume that a definable $f: \mathcal{D} \backslash([-1 / 2,1 / 2] \times\{0\}) \longrightarrow \mathbb{C}$ is holomorphic and bounded. Does f extend to \mathcal{D} ? (preserving boundedness).

7 Definable complex manifolds and analytic sets

We now work with $R=\mathbb{R}$, so $K=\mathbb{C}$. Apparently the results should still be valid in the more general context.

Definition 7.1. A definable \mathbb{C}-manifold is
i. a definable $M \subseteq \mathbb{R}^{d}$,
ii. a finite cover by definable subsets $U_{i}, i \in I$,
iii. For all $i \in I$, a definable bijection $\phi_{i}: U_{i} \longrightarrow V_{i}$ into an open subset V_{i} of \mathbb{C} such that the transition maps are holomorphic.
Note that the transition maps are definable.
Example 7.2. Open subsets of \mathbb{C}^{n}, graphs of definable holomorphic maps $\mathbb{C}^{n} \supseteq U \longrightarrow \mathbb{C}$, as well as the projective spaces are definable manifolds. If Λ is a discrete sugroup of $(\mathbb{C},+)$, then the quotient \mathbb{C} / Λ can be equipped with a \mathbb{C}-manifold chart by realizing this within $\mathbb{C}^{7.1}$. For instance, take $\Lambda=2 \pi i \mathbb{Z}$, and define \mathbb{C} / Λ to be $\{z \in \mathbb{C}: 0 \leqslant \operatorname{Im}(z)<2 \pi\}$. We then give the two usual charts. If we are working in $\mathbb{R}_{\text {an,exp }}$ in the language, then the complex exponential is definable on small strips on \mathbb{C}, so we can realize \mathbb{C} / Λ as a definable "holomorphic" copy of \mathbb{C}^{\times}.

Fact: Every compact analytic manifold is definably biholomorphic (in the sense of manifolds) to a definable \mathbb{C}-manifold.

Definition 7.3. Let M, N definable \mathbb{C}-manifolds. A definable holomorphic function $M \longrightarrow N$ is a definable function $f: M \longrightarrow N$ which is holomorphic through charts.

Definition 7.4. A definable submanifold is a definable subset $X \subseteq M$ which is an \mathbb{R}-submanifold, for which moreover the tangent space at each a is \mathbb{C}-linear.

The only compact definale submanifolds of \mathbb{C} are the finite sets.

[^0]Theorem 7.5. Let M be a definable \mathbb{C}-manifold. If $X \subseteq M$ is a definable submanifold, then it has a natural structure of definable \mathbb{C}-manifold, and the inclusion $X \hookrightarrow M$ is a definable holomorphic function.

Definition 7.6. Let M be a definable \mathbb{C}-manifold. A definable analytic subset of M is a definable closed $X \subseteq M$ such that for all $z \in X$, there are a definale neighorhood U_{z} of z and finitely many definable and holomorphic functions $f_{1}, \ldots, f_{n}: U_{z} \longrightarrow \mathbb{C}$ with

$$
X \cap U_{z}=Z\left(f_{1}, \ldots, f_{n}\right)=\left\{y: f_{1}(y)=\cdots=f_{n}(y)=0\right\}
$$

It can be showed that in fact X can be covered by finitely many such sets U_{z} and functions.
Example 7.7. Algeraic varieties in \mathbb{C}^{n} are definable analytic subsets of \mathbb{C}. If M is a definable compact \mathbb{C}-manifold for \mathbb{R}_{an}, then every analytic subset of M is a definable analytic subset of M (again in $\mathbb{R}_{\text {an }}$).
(By Chow's theorem, every analytic subset of $\mathbb{P}^{n}(\mathbb{C})$ is an algebraic variety.)

8 Removal of singularities

The basic problem: M is a definable \mathbb{C}-manifold, we have a definable open $U \subseteq M$, and a definable analytic subset X of U as per Definition 7.6. When is the closure $\mathrm{Cl}_{M}(X)$ of X in M an analytic subset of M ? So did we "add singularities" by taking the closure?

Example 8.1. Let $M=\mathbb{C}$ and take U to be the unit disk. So U is a definable analytic subset of itself. But the closed disk is not an analytic subset of \mathbb{C}.

8.1 Main removal of singularities results

We recall a classical result of removal of singularities:
Remmert-Stein theorem. Let N be a \mathbb{C}-manifold, let $E \subseteq N$ be a \mathbb{C}-analytic subset, and set $V:=$ $N \backslash E$. If $Y \subseteq V$ is irreducible analytic subset, and $\operatorname{dim}_{\mathbb{C}}(Y)>\operatorname{dim}_{\mathbb{C}}(E)$, then $\mathrm{Cl}_{N}(Y)$ is an analytic subset of N.

A bunch of o-minimal ROS results:

1. Assume that $\operatorname{dim}_{\mathbb{R}}(\operatorname{Fr}(X \cap V) \cap V) \leqslant \operatorname{dim}_{\mathbb{R}}(X \cap V)-2$ for all non-empty definable open $V \subseteq M$. Then $\mathrm{Cl}_{M}(X)$ is an analytic susbet of M.
2. Let $E \subseteq M$ be a definable analytic subset with $U=M \backslash E$. Then $\mathrm{Cl}_{M}(X)$ is an analytic susbet of M.

A corollary of 1 is that
Corollary 8.2. If $\left\{X_{t}: t \in \Gamma\right\}$ is a definable family of subsets of a definable \mathbb{C}-manifold M, then the set $\left\{t \in \Gamma: X_{t}\right.$ is a definable analytic subset of $\left.M\right\}$ is definable.

Proof. Set $\operatorname{Reg}_{\mathbb{C}}\left(X_{t}\right)=\left\{x \in X_{t}\right.$: the germ of X_{t} at x is a the germ of a \mathbb{C}-submanifold of $\left.M\right\}$ for each $t \in \Gamma$. Each $\operatorname{Reg}_{\mathbb{C}}\left(X_{t}\right)$ is a locally analytic definable subset of M. The set X_{t} is an analytic subset of M if and only if X_{t} is closed, if $\operatorname{Reg}_{\mathbb{C}}\left(X_{t}\right)$ is dense in X_{t}, and if $\operatorname{dim}_{\mathbb{R}}\left(\operatorname{Fr}\left(\operatorname{Reg}_{\mathbb{C}}\left(X_{t}\right) \cap V\right)\right) \leqslant$ $\operatorname{dim}_{\mathbb{R}}\left(\operatorname{Reg}_{\mathbb{C}}\left(X_{t}\right) \cap V\right)-2$ for all non-empty definable open $V \subseteq M$.

It follows that we have a:
Definable Chow theorem. If $X \subseteq \mathbb{C}^{n}$ is a definable analytic subset, then X is algebraic.
Corollary 8.3. If $\left(X_{t}\right)_{t \in \Gamma}$ is a definable family of subsets of \mathbb{C}^{n}, then $\left\{t \in \Gamma: X_{t}\right.$ is algebraic $\}$ is definable.

Exercise 8.1. Show that this result fails for real-algebraic (definable) subsets in o-minimal structures.

9 Moduli spaces of elliptic curves

Assume that we have a lattice $\Lambda_{\tau}=\tau_{1} \mathbb{Z}+\tau_{2} \mathbb{Z}$ where $\tau=\left(\tau_{1}, \tau_{2}\right)$ is an \mathbb{R}-basis of \mathbb{C}. Write $F_{\tau}:=\mathbb{C} / \Gamma_{\tau}$ with its definable structure of C-manifold. Then we saw that F_{τ} is isomorphic to an elliptic curve $E_{\tau} \subseteq \mathbb{P}^{1}(\mathbb{C})$.

We may assume that $\tau=(\tau, 1)$ where $\tau \in \mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$. Recall that E_{τ} and $E_{\tau^{\prime}}$ are isomorphic if and only if there is a $g \in \mathrm{SL}_{2}(\mathbb{Z})$ with $\tau^{\prime}=g \cdot \tau$ (where \cdot is the standard action of $\mathrm{SL}_{2}(\mathbb{Z})$ on $\left.\mathbb{H}\right)$. Moreover, there is a holomorphic and transcendental surjective map $j: \mathbb{H} \longrightarrow \mathbb{C}$ with

$$
\forall \tau, \tau^{\prime} \in \mathbb{H},\left(j(\tau)=j\left(\tau^{\prime}\right) \Longleftrightarrow \mathrm{SL}_{2}(\mathbb{Z}) \cdot \tau=\mathrm{SL}_{2}(\mathbb{Z}) \cdot \tau^{\prime} \Longleftrightarrow E_{\tau} \simeq E_{\tau^{\prime}}\right)
$$

where the isomorphism is as abelian varieties, analytic manifolds. The function j is called the j invariant.

9.1 Fundamental domain for j

Set

$$
F=\{z \in \mathbb{H}:(\operatorname{Re}(z) \in[-1 / 2,0) \wedge|z| \geqslant 1) \vee(\operatorname{Re}(z) \in[0,1 / 2) \wedge|z|>1)\} .
$$

Then each orbit of $\mathrm{SL}_{2}(\mathbb{Z})$ has excatly one representative in F. It follows that $j \upharpoonleft F: F \longrightarrow \mathbb{C}$ is still surjective (and injective).

Theorem 9.1. The function $j \upharpoonleft F$ is definale in $\mathbb{R}_{\mathrm{an}, \exp }$.
Proof. Consider the function $e(z):=\exp (2 i \pi z)$. Then $e \upharpoonleft F$ is definable in $\mathbb{R}_{\text {an, exp }}$ by previous results. Now on any bounded part B of F, the function j is definable on $B \cap F$ in $\mathbb{R}_{\text {an }}$. For $z=x+i y \in \mathrm{Cl}(F)$, we have $e(z)=\exp (2 \pi i x) \cdot \exp (-2 \pi y)$, and we see that $e(\mathrm{Cl}(F))$ is the punctured disk D^{*} centered on 0 . Recall that in particular $j(z+1)=j(z)$ for all $z \in \mathbb{H}$, and $e(z+1)=e(z)$ as well. So we can factor j by e and get an analytic map $\tilde{j}: D^{*} \longrightarrow \mathbb{C}$ with

$$
j \upharpoonleft \mathrm{Cl}(F)=\tilde{j} \circ(e \upharpoonleft \mathrm{Cl}(F))
$$

Fact: $\lim _{|z| \rightarrow+\infty}|j|=+\infty$, so $\lim _{z \rightarrow 0}|\tilde{j}|=+\infty$, i.e. 0 is a pole of \tilde{j}, and we can write $\tilde{j}=\frac{f}{g}$ where f, g are analytic, definable in $\mathbb{R}_{\text {an }}$. So $j \upharpoonleft F$ is definable in $\mathbb{R}_{\text {an, exp }}$.

[^0]: 7.1. this speaks to Lou's remark being relevant: can we not define this abstractly rather than always having to find a embedded representation?

