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1 Topological fields

1.1 Topological fields

Definition 1.1. A topological field is a field F together with a topology T on F for which the sum,
product, additive and multiplicative inverse functions are continuous.

Properties A few properties:
e The space (F, 1) is Hausdorff.
e If (F,7) is compact, then F is finite.
e 2! has no limit at 0.

e There exists a non-empty open proper subset of F.

Example 1.2. The following are topological fields.
e Finite fields with the discrete topology.
e Linearly ordered fields with the order topology.

e If F is any field, then the field F[[t%]] = F((t)) of formal Laurent series with the valuation
topology (in fact any valued field). Note that F C F((t)) is closed, and that the induced
topology on F' is the discrete topology.

mn

e Let (F,7) be a topological field, and consider an algebraic extension F'[a]. Then Fla|~F
as a vector space over F. The product topology then induces a topological field.

1.2 Differentiability in topological fields
We fix a topological field (F, 7).

Definition 1.3. Let U be open, let xo €U and let f:U — F. Then f is said differentiable if there
exists a d € F such that

h—0 h B
h#0

The number d is unique, and we write d:= f'(xg).

This is preserved by sums, products, quotients, composition and so on. Moreover differentiab-
ility implies continuity. We also have the Cauchy-Riemann equations.
We will next consider more specific contexts: o-minimality in particular.

1.3 The o-minimal case

Let R=(R,+, X, <, —) be o-minimal and write K = (K, +, x) for its algebraic closure K =
R[\/—1]. Any K-rational function is differentiable.

Consider the case of Ray,. If h € C[[z]] converges in a neighborhood of zome zg € C, then there
is some open U 3 zp such that A 1U is definable in R,y,.
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On C, the function exp is not definable in any o-minimal expansion of R. Fact: let U be open
such that exp1U is definable in some o-minimal expansion of R. Then the imaginary part of U

must be bounded. Indeed, defining g(z) = &P(#) _ oilm(2) on {7, and the set {(0,y)eUN{0} xiR:

.  Jexp(z)]
e =1} C27Z (project onto the y-axis if you must) must be bounded by o-minimality. Conversely,
in Ran,exp, €ach such exp1U is definable whenever U is definable. In particular exp is defined and
injective on the strip of z € C with Im(z) € [-7, 7). So log: C\ R>" is definable.

Question 1. Assume V CR" is open and f:V — R" is real-analytic and definable in some o-
minimal expansion of R, then when can f be extended definably to some f:U — C™ which is
complex-analytic, where U C C" is open? This is open for f definable in Ran, exp-

Answer 1. Tobias Kaiser proved the result for unary functions definable in Ran exp. Andre Opris
shows in his PhD thesis that this is the case for a large class of functions called restricted exp-log-
analytic functions, which is a proper subset of the set of definable functions in Ran, exp-

1.4 Diverging series

Consider the field Rpyi = Un>0]R((t%)) of formal Puiseux series over R, where ¢ is a positive
infinitesimal. The field Rpy; is real-closed. Let Kp,; denote its algebraic closure. For all h € R][[z,...,
zn)] (formal power series), we have a function h: (—t,¢)” — Rpy. Write R for the structure
(Rpuis +, X, <, (R)heR([z,...,2,)])- Robinson and Lipshitz showed that this is o-minimal. Any such
function h € R[[21]] can be dedinably extended to (—t,t)% C Kpy;.

2 Topological analysis

We fix an o-minimal expansion R of a real-closed field R, and write K for the algebraic closure of R.

2.1 Winding numbers
Everything will be definable.

Definition 2.1. A definable closed curve in R? is a definable and continuous o: [0, 1] — R?
with 0(0) = o(1). We sometimes write C := o([0, 1]). The curve o is called simple if o[p,q) is
mjective.

Example 2.2. $1:={z€ K:|z|>=1}. We fix some simple counter-clockwise semi-algebraic para-
metrization sg of $!.

Given any closed curve (o,C) and a definable continuous map f:C — $!. We have maps

0,1) ¢ Lg% 0,1
choosing so so that so(0):= f(0(0)). Write f:=si"o foo:[0,1) — [0,1). For simplicity, assume
that f is not locally constant anywhere. The only possible discontinuities lie in f ~1({0}), which
by o-minimality, is finite. Write 0=ag < --- <a,_1 <1 be the discontinuities. We add a,:=1 as

a point, in order to define the winding number of f as follows. For i € {0,...,n}, write
flaf) = lim f(1),
s
fla7) = Jim f).
<o
We define the winding number We(f) of f as
n—1
We(f):=) flaiv) - flah)eZ
i=0

xample
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Example 2.3. Take f:$!— $'; 2 22 Then Wgi(f) =2. Also We(z— —22) =2, and We(z+—
27 =—1.

Remark 2.4. If (f(t))tep is a definable family of continuous functions C; — $*. Then by o-
minimality the numbers n; corresponding to n above are bounded, so the definition of Wz (f) can
be done uniformly.

Let us give a few properties of those winding numbers.
i. If f:C— S8 is not surjective, then W¢(f)=0.

ii. Let f,g:C — $! be definably holomorphic. Assume that f and g are homotopy-equivalent,
i.e. there is a continuous H:[0,1]> — $! with H(0,—)= f and H(1,—)=g. Then W¢(f)=
We(g). This relies on the facts that [0, 1] is dedinably connected in R, and that the function
t— We(H(t,—)) is locally constant.

iii. For continuous definable f, g:C — 3!, we have We(fg) = We(f) +We(g).

iv. If one reverses the parametrization of C, then W_c=—-W,.

Definition 2.5. Let f:C — $' be definable and continuous, and let wo€ K \ f(C). We want to
define the winding number We(f,wg) of f around wy. We define fy,,:C —»SI;ZHM,

|£(2) — wol
and set We(f,wo) :=We( fuw,)-

2.2 Winding number and K-differentiability

Lemma 2.6. Let U C K be definable, open and mnon-empty. Let f:U — K be definable and
continuous, and let zo €U such that f is K-differentiable at zo. If f'(20) #0, then for all sufficiently
small circles C centered at zg, we have We(f, f(z0))=1.

Proof. Write d:= f'(z9) € K*. Since d#0, there is a Uy CU with f(z)# f(zo) for all z€ U \ {zo}.

So we can consider h: U; — $1; 2 s L) 210 AYgg set
If(2) = f(20)l

_ d(z—20)
S P

Note that We(k) =1 for all circles C around zg. Since f'(z9) =d, for z sufficiently close to zo,
h(z)

the element o) is close to 1. In particular, picking a sufficiently small circle C around zg, the
function %z C — 8! is not surjective. So We(h) — We(k) = WC(%) =0. We conclude that We(f,
f(z0)) =We(h) =We(k) =1. O

Write D for the closed unit disk in K, and C for the unit circle, parametrized counter-clockwise.
Main Lemma. Let f: D — K be definable and K-differentiable on Int(D). Let wo€ K \ Int(D).
We have

. If’LU()¢ f(D)’ then WC(faw()) =0.

it. If woe f(D), then We(f,wo) >0.

iti. Each connected component of K \ f(C) is either contained in or disjoint from f(D).
Example 2.7. We give an example where ii.+iii. fail for a continuous but not K-differentiable

f. Let f(z,y):=(z,9%. So f(C) is an upper arc in K, and K \ f(C) has one definably connected
component, and has winding number 0 around any element in the K \ f(C) including those which

lie in f(D).

Proof of the Main Lemma. We first prove i. We can use an homotopy to shrink C continuously,
and as the radius of C tends to 0, the curve f(C) is close to f(0), so fu, will not be surjective (it
will only cover a small angle). So the winding number of f,, is 0, hence the result.
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Let us now prove ii. Fix a definably connected and open component X of K\ f(C) which
contains wg. Since f(D) is definably connected (because D is and f is continuous and definable),
the point wy is not isolated in X, so f(D)N X is infinite. Consider the open set U: f~1(X). We
claim that the set

P:={zeU: f'(2)#0}

has dimention 2. Indeed assume for contradiction that P has dimension < 1. Then in particular Z:=
{z€U: f'(z) =0} has codimension <1. But f1Z has differential 0 everywhere, so partitioning Z,
we see that f is locally constant, so takes only finitely many values. So f(U) is finite: contradicting
the previous argument.

The statements of the main lemma are first-order, so we can move to a sufficiently saturated
elementary extension, and consider a generic point zg in X over &. Then f is C! at zy as an R-
function. Moreover J(f),, is invertible (i.e. f’(z9)#0), then the inverse function theorem for o-
minimal structures gives that f(U) C X contains an open set, whence in particular f(D)N X
contains an open set.

Pick w; € f(D)N X be generic, so dim(w; /@) =2. We claim that f~!({w}) is finite and
that f’ is non-zero on this set. Assume for contradiction that f~!({w;}) is infinite. Let Xj:=
{we f(D)NX: f~1({w}) is infinite}. Then dim X; =2 since it contains the generic point w;. So
f: f Y {w1}) — X7 is surjectve for all such infinite fibers, which is impossible since the dimentin
of f~1({w1}) is <0. Assume for contradiction that there is z € f~!({w;}) with f’(z) =0, and
write X for the set of such z’s. Then again Xo:={w € f(D)NX: f'(z) =0} has dimension 2. By
definable choice, there is a Y3 C K such that for all w € Xy, there is a y € Y; with f/(y) =0 and this
yields a similar contradiction. O

03-02: Lecture 5

Removal of singularities a la Riemann. Let U be open and non-empty, let zo € U and let f:
U\{z0} — K be definable, K-differentiable and bounded. Then there is a unique wo € K such that
the extension of f to U with f(zo) =wq is K-differentiable.

Proof. Set h(z):=(z — 29) f(z) for z€ U \ {z0} and h(zp) =0. Since f is bounded, we have
limg h =0, so h is K-differentiable on U \ {20}, so by the previous theorem, the function h is K-
differentiable at zg, with h'(z9) =lim,, f. We then extend f by continuity and see that f is K-
differentiable at zg. O

Using the previous result and the maximum principle, one can prove the following:

Theorem 2.8. If f:U — K is definable and K-differentiable, then f' is also K-differentiable.

3 Isolated singularities

We start with an o-minimal fact:

Fact Let U be open and non-empty. Let g: U — K be definable, let z € U. Then there is a
neighborhood V' of z such that g(V NU) is not dense in K.

Proof. Assume for contradiction that this is not the case. So for all we K \ f({z0NU}) there is a
definable path v:[0;1] — K \ {20} converging to zo such that fo~ tends to w. So (v, fo~) tends
to (2o, w). So {z0} X (K \{20}) C f1U \ {20} \ f. But this is the frontier of a set of dimension 2,
whereas {zo} x (K \ {20 }) has dimension 2: a contradiction. O

We fix an open set U, a point zp € U and a definable and K-differentiable f:U \ {20} — K.
Assume that f is not constant around zg. We define the order Ord,,(f) €Z of f at z as follows.
Recall that for sufficiently large » € R”, the number We, (f,0) is constant (where C, is the circle
around zg of radius r). We then define Ord,,(f) to be that integer.

Case 1: zg is a removable singularity and f(z¢) =0. Write f for the continuation on U.
We have 0 € D, := Conv(C,), whence

Ordzo(f) > Oa
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by a previous theorem.

Case 2: zp is a removable singularity and f(zg) # 0. Again write f for the continuation
on U. If f(z)#0, then we claim that

Ord,,(f)=0.
Indeed shrinking C, (hence D,) sufficiently, we can obtain that f(zo) lie outside of D,.

Case 3: zg is not removable. In particular f must be unbounded near zy. We claim that

lim | f| =~4o0. (3.1)
20

Let V be a neighborhood of zg, let wy € K and rg € R~ such that

| f(2) —wo| >0 (3.2)
for all ze V' \ {z0}. Set
1
f(z) —wo

for all z €V \ {z0}. The function h is K-differentiable, and bounded by (3.2). So 2 is a
removable singularity for h. So lim,,h € K. We conclude since f is unbounded near 2, that
lim,, h =0, whenc |lim,, f|=+oc.

Let us show that

h(z):=

Ord,,(f) <0.
Set

on a [épointé] neighborhood X of zyp. By (3.1), we can extend 7 to zo by setting 7(zp) :=0.
Now we know that We, (n,0) >0, whence W (f,0) =0 for all sufficiently small r € R~ (i.e.
whenever C, C X).

Theorem 3.1. Set n:=0rd, (f). Thereis a definable and K-differentiable g:U — K with g(zo) #
0 such that

f(2)=g(2) (z = 20)"
for all z€ U\ {z}.

Proof. Let r € R~ be sufficiently small, so n =W (f,0). Note that We ((id — z9)™, 0) =n, so

setting g ::m on U \ {20}, we have W _(g,0) =0. By the previous trichotomy, the function

g can be extended to zg with g(zg) # 0; hence the result. O

Corollary 3.2. Assume that f is K-differentiable at zg and that Ord,,(f)>0. Then Ord,,(f):=

min{n € %: f(2) #£0} where f™(z0) #0 means that there is an analytic continuation of f such
that. ..

Corollary 3.3. For non-standard o € R®N, “the” function z+— z* cannot be defined as a K-
differentiable map on a neighborhood of 0.

4 Taylor series

Let U C K be a non-empty open definable set, and let zo € U.
From the proof of Theorem 3.1, we deduce:

Theorem 4.1. Let f:U — K be definable and K-differentiable. Then

n (k‘)
vn €N, Ord20<f > fk—(!ZO)(idzo)k> >n.
k=0
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If 2y is a pole, then
n

Vn>O0rd.(f),Ords| f= > ax(id—20)* |>0
k=Ord.(f)

for a fized sequence (aora. (f)---)-

Corollary 4.2. The map
#)(
pre 3 S
k>0
from germs at zo of K-differentiable and definable functions to power series in K[z — zo]] is
injective.
Theorem 4.3. FEvery definable K-differentiable function f: K — K is a polynomial.

Theorem 4.4. If f: K\ {20,...,2n} — K is definable and K-differentiable, then f is a polynomial.

5 Some model theory

Proposition 5.1. Let (fi)ter be a definable family of K-differentiable functions K — K, then
there is an N € N such that each f; has degree <N.

Question 2. Let (fi):ter be a definable family of polynomial functions on D. Is there a uniform
bound on the degree of f;?

Example 5.2. [by A. PIEKOSZ| Let (an)nen be an arbitrary sequence of complex numbers in D1/,
with absolute value <5. Define

[:Dy,xDy, — C
(z,w) — Zz”(w—al)'u(wfan).
n>1

This is definable in R,y,, and for all n € N, the function f(—,a,) is a polynomial of degree n. But
for w ¢ {a,:n € N} the function f(—,w) is not a polynomial, so this doesn’t give a negative answer
to the previous question.

Proposition 5.3. Let (fi)ter be a definable family of K-differentiable functions on U\ {z:} for
open sets Uy > zy,t €. Then there is an N € N, such that for all t €', either f; is locally constant
around z¢ or |Ord,,(f:)| <N.

Proposition 5.4. Let (fi)ier be a definable family of K-differentiable functions on U\ {z¢} for
open sets Uy zy,t €. Fortel, let

Z ag () (2 — 2k
k>—N
be the Laurent series associated to f;, where N is as in the previous proposition. Then the function

t—ap (2)
is definable.

Let us now go back to the classical setting K = C. Let C be a simple closed curve and let f:
U 2 C — K have finitely many residues z, ..., z, in Int(Hull(C)). Recall that res,(f) =a_1(z) in
the previous notations. We have 2+” Jof =ress, (f) + - +res,, (f).

So if (fi)ter is as above and (Ci)ier is a definable family of simple closed curves, and F; C
Conv(C;) is finite and uniformly definable, then the function

t—> It

is also definable. cr
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Theorem 5.5. If f: K™ — K s definable and K-differentiable, then f is polynomial.

Proof. For all @€ K™~ 1 the function f(@,—) is polynomial by the one variable corresponding
result. By o-minimality, the degrees of corresponding polynomials when @ ranges in K™~ ! are

bounded by some d € N. So f(Z,y)= ZZ:O ax(Z) y*. Loooking at S—i, we can conclude by induc-
tion. O

In fact, we have a result from PALAIS (1978) that for any uncountable field F' and f: F" — F
which is polynomial in each variable, the function f is in fact polynomial.

6 Behavior at boundary points

Assume that f:U — K is definable and K-differentiable on a non-empty open set U C K, and let
20 € 0OU such that U NV is simply connected for some neighborhood V' of zp. Then lim,, f exists
in RU{oo}. Indeed recall that for f:D — K definable, and non-constant and K-differentiable on
Int(D), then fi™V(w) is finite on dD. Indeed assume that f as infinitely many limit points around
zo- Then sufficiently close to zp, one can also arrange that f is injective and that it have non-zero
derivative. So the inverse map of the restriction will be K-differentiable on an open set. Then finv
sends an infinite subset of D(w) to zp, so f™ must be constant: a contradiction.

Question 3. Assume that a definable f: D\ ([—1/3, ] x {0}) — C is holomorphic and bounded.
Does f extend to D7 (preserving boundedness).

7 Definable complex manifolds and analytic sets

We now work with R=1R, so K =C. Apparently the results should still be valid in the more general
context.

Definition 7.1. A definable C-manifold is
i. a definable M C RY,
1. a finite cover by definable subsets U;,i € 1,

1. For all i € I, a definable bijection ¢;: U; — V; into an open subset V; of C such that the
transition maps are holomorphic.

Note that the transition maps are definable.

Example 7.2. Open subsets of C", graphs of definable holomorphic maps C" 2 U — C, as well
as the projective spaces are definable manifolds. If A is a discrete sugroup of (C, +), then the
quotient C /A can be equipped with a C-manifold chart by realizing this within C7-!. For instance,
take A=2mi7Z, and define C/A to be {z€C:0<Im(z) <27}. We then give the two usual charts.
If we are working in Ran, exp in the language, then the complex exponential is definable on small
strips on C, so we can realize C/A as a definable “holomorphic” copy of C*.

Fact: Every compact analytic manifold is definably biholomorphic (in the sense of manifolds)
to a definable C-manifold.

Definition 7.3. Let M, N definable C-manifolds. A definable holomorphic function M — N is
a definable function f: M — N which is holomorphic through charts.

Definition 7.4. A definable submanifold is a definable subset X C M which is an R-submanifold,
for which moreover the tangent space at each a is C-linear.

The only compact definale submanifolds of C are the finite sets.

7.1. this speaks to Lou’s remark being relevant: can we not define this abstractly rather than always having to
find a embedded representation?
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Theorem 7.5. Let M be a definable C-manifold. If X C M is a definable submanifold, then it has
a natural structure of definable C-manifold, and the inclusion X — M is a definable holomorphic
function.

Definition 7.6. Let M be a definable C-manifold. A definable analytic subset of M is a definable
closed X C M such that for all z € X, there are a definale neighorhood U, of z and finitely many
definable and holomorphic functions f1,..., fn: U, — C with

XﬂUz:Z(fla---afn):{y:fl(y):"':fn(y):o}-
It can be showed that in fact X can be covered by finitely many such sets U, and functions.

Example 7.7. Algeraic varieties in C"™ are definable analytic subsets of C. If M is a definable
compact C-manifold for R,,, then every analytic subset of M is a definable analytic subset of M
(again in Ray).

(By Chow’s theorem, every analytic subset of P"*(C) is an algebraic variety.)

8 Removal of singularities

The basic problem: M is a definable C-manifold, we have a definable open U C M, and a definable
analytic subset X of U as per Definition 7.6. When is the closure Cly/(X) of X in M an analytic
subset of M? So did we “add singularities” by taking the closure?

Example 8.1. Let M =C and take U to be the unit disk. So U is a definable analytic subset of
itself. But the closed disk is not an analytic subset of C.

8.1 Main removal of singularities results
We recall a classical result of removal of singularities:
Remmert-Stein theorem. Let N be a C-manifold, let E C N be a C-analytic subset, and set V :=
N\ E. If Y CVis irreducible analytic subset, and dime(Y) > dime(E), then Cly(Y) is an analytic
subset of N.

A bunch of o-minimal ROS results:

1. Assume that dimg(Fr(X NV)NV) <dimg(X NV) — 2 for all non-empty definable open
V C M. Then Clp(X) is an analytic susbet of M.

2. Let E C M be a definable analytic subset with U = M \ E. Then Cly(X) is an analytic
susbet of M.

A corollary of 1 is that

Corollary 8.2. If {X;:t€T} is a definable family of subsets of a definable C-manifold M, then
the set {t €T : X; is a definable analytic subset of M} is definable.

Proof. Set Regc(X:) ={x € X;: the germ of X, at z is a the germ of a C-submanifold of M } for
each t € T'. Each Regg(X:) is a locally analytic definable subset of M. The set X; is an analytic
subset of M if and only if X} is closed, if Regc(X) is dense in X, and if dimg(Fr(Rege(X:)NV)) <
dimg(Rege(X:) NV) —2 for all non-empty definable open V C M. O

It follows that we have a:
Definable Chow theorem. If X CC" is a definable analytic subset, then X is algebraic.

Corollary 8.3. If (Xi)ier is a definable family of subsets of C", then {t €T : X; is algebraic} is
definable.
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Exercise 8.1. Show that this result fails for real-algebraic (definable) subsets in o-minimal structures.

9 Moduli spaces of elliptic curves

Assume that we have a lattice A, =71 Z+ 172 Z where 7= (71, 72) is an R-basis of C. Write F,:=C/T;
with its definable structure of C-manifold. Then we saw that F. is isomorphic to an elliptic curve
E, CPYD).

We may assume that 7= (7,1) where 7€ H={z € C:Im(z) > 0}. Recall that E, and E, are
isomorphic if and only if there is a g € SLo(Z) with 7/ = g- 7 (where - is the standard action of
SLy(Z) on H). Moreover, there is a holomorphic and transcendental surjective map j: H — C with

vr, 7' eH, (j(7)=j(1") <= SLa(Z) - 7=SLs(Z) - 7' <= E, ~ E./)

where the isomorphism is as abelian varieties, analytic manifolds. The function j is called the
7 invariant.

9.1 Fundamental domain for j
Set
F={zeH:(Re(z) €[~,0)Alz| =1)V (Re(z) €0, o) Alz] >1)}.
Then each orbit of SLy(7Z) has excatly one representative in F. It follows that j| F: F — C is
still surjective (and injective).

Theorem 9.1. The function j1F is definale in Ran, exp-

Proof. Consider the function e(z) :=exp(2¢mz). Then e F is definable in Ran exp by previous
results. Now on any bounded part B of F, the function j is definable on BN F in R,,. For
z=uz+1iy € Cl(F), we have e(z) =exp(2miz)- exp(—2my), and we see that e(Cl(F)) is the
punctured disk D* centered on 0. Recall that in particular j(z + 1) = j(2) for all z € H, and
e(z+1)=e(z) as well. So we can factor j by e and get an analytic map j: D* — C with

J1CUF) = jo(e] CUF))

Fact: lim,|—, oo || = +00, 50 lim._.o[j| = +00, i.e. 0 is a pole of j, and we can write jzg where
f, g are analytic, definable in R,y,. So j1F is definable in Ran exp- O
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