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1 Topological fields

1.1 Topological fields

Definition 1.1. A topological field is a field F together with a topology � on F for which the sum,
product, additive and multiplicative inverse functions are continuous.

Properties A few properties:

� The space (F ; �) is Hausdorff.

� If (F ; �) is compact, then F is finite.

� x 7!x¡1 has no limit at 0.

� There exists a non-empty open proper subset of F .

Example 1.2. The following are topological fields.

� Finite fields with the discrete topology.

� Linearly ordered fields with the order topology.

� If F is any field, then the field F [[tZ]] =F ((t)) of formal Laurent series with the valuation
topology (in fact any valued field). Note that F � F ((t)) is closed, and that the induced
topology on F is the discrete topology.

� Let (F ; �) be a topological field, and consider an algebraic extension F [�]. Then F [�]'F n

as a vector space over F . The product topology then induces a topological field.

1.2 Differentiability in topological fields
We fix a topological field (F ; �).

Definition 1.3. Let U be open, let x02U and let f :U ¡!F. Then f is said differentiable if there
exists a d2F such that

lim
h!0
h=/ 0

f(x0+h)¡ f(t)
h

= d:

The number d is unique, and we write d := f 0(x0).

This is preserved by sums, products, quotients, composition and so on. Moreover differentiab-
ility implies continuity. We also have the Cauchy-Riemann equations.

We will next consider more specific contexts: o-minimality in particular.

1.3 The o-minimal case
Let R= (R; +;�; <;¡¡) be o-minimal and write K = (K;+;�) for its algebraic closure K =
R[ ¡1
p

]. Any K-rational function is differentiable.
Consider the case of Ran. If h2C[[z]] converges in a neighborhood of zome z02C, then there

is some open U 3 z0 such that h �U is definable in Ran.
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On C, the function exp is not definable in any o-minimal expansion of R. Fact: let U be open
such that exp �U is definable in some o-minimal expansion of R. Then the imaginary part of U
must be bounded. Indeed, defining g(z)= exp(z)

jexp(z)j=e
iIm(z) on U , and the set f(0; y)2U \f0g� iR :

eiy=1g�2�Z (project onto the y-axis if you must) must be bounded by o-minimality. Conversely,
in Ran;exp, each such exp �U is definable whenever U is definable. In particular exp is defined and
injective on the strip of z 2C with Im(z)2 [¡�; �). So log:C nR>0 is definable.

Question 1. Assume V �Rn is open and f : V ¡!Rn is real-analytic and definable in some o-
minimal expansion of R, then when can f be extended definably to some f̂ :U ¡!Cn which is
complex-analytic, where U �Cn is open? This is open for f definable in Ran;exp.

Answer 1. Tobias Kaiser proved the result for unary functions definable in Ran;exp. Andre Opris
shows in his PhD thesis that this is the case for a large class of functions called restricted exp-log-
analytic functions, which is a proper subset of the set of definable functions in Ran;exp.

1.4 Diverging series

Consider the field RPui=
S
n>0R

¡¡
t
1
n

��
of formal Puiseux series over R, where t is a positive

infinitesimal. The fieldRPui is real-closed. Let KPui denote its algebraic closure. For all h2R[[z1;:::;
zn]] (formal power series), we have a function h: (¡t; t)n ¡!RPui. Write R for the structure
(RPui;+;�; <; (h)h2R[[z1; : : : ;zn]]). Robinson and Lipshitz showed that this is o-minimal. Any such
function h2R[[z1]] can be dedinably extended to (¡t; t)2�KPui.

2 Topological analysis
We fix an o-minimal expansionR of a real-closed field R, and writeK for the algebraic closure of R.

2.1 Winding numbers
Everything will be definable.

Definition 2.1. A definable closed curve in R2 is a definable and continuous �: [0; 1]¡!R2

with �(0) = �(1). We sometimes write C := �([0; 1]). The curve � is called simple if �[0;1) is
injective.

Example 2.2. S1 := fz 2K : jz j2=1g. We fix some simple counter-clockwise semi-algebraic para-
metrization s0 of S1.

Given any closed curve (�; C) and a definable continuous map f : C ¡!S1. We have maps

[0; 1)¡!
�
C ¡!

f
S1¡!

s0
inv

[0; 1)

choosing s0 so that s0(0) := f(�(0)). Write f̂ := s0
inv � f � �: [0; 1)¡! [0; 1). For simplicity, assume

that f is not locally constant anywhere. The only possible discontinuities lie in f̂¡1(f0g), which
by o-minimality, is finite. Write 0= a0< � � �<an¡1< 1 be the discontinuities. We add an := 1 as
a point, in order to define the winding number of f as follows. For i2f0; : : : ; ng, write

f(ai
+) := lim

t!ai
t>0

f(t);

f(ai
¡) := lim

t!ai
t<0

f(t):

We define the winding number WC(f) of f as

WC(f) :=
X
i=0

n¡1

f(ai+1
¡ )¡ f(ai

+)2Z:

xample
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Example 2.3. Take f :S1¡!S1; z 7! z2. Then WS1(f)= 2. Also WC(z 7!¡z2)= 2, and WC(z 7!
z¡1)=¡1.

Remark 2.4. If (f(t))t2D is a definable family of continuous functions Ct¡! S1. Then by o-
minimality the numbers nt corresponding to n above are bounded, so the definition of WC(f) can
be done uniformly.

Let us give a few properties of those winding numbers.

i. If f : C ¡!S1 is not surjective, then WC(f)= 0.

ii. Let f ; g:C¡!S1 be definably holomorphic. Assume that f and g are homotopy-equivalent,
i.e. there is a continuous H: [0; 1]2¡!S1 with H(0;¡)= f and H(1;¡)= g. Then WC(f)=
WC(g). This relies on the facts that [0;1] is dedinably connected in R, and that the function
t 7!WC(H(t;¡)) is locally constant.

iii. For continuous definable f ; g: C ¡!S1, we have WC(f g)=WC(f)+WC(g).

iv. If one reverses the parametrization of C, then W C=¡WC.

Definition 2.5. Let f : C ¡!S1 be definable and continuous, and let w02K n f(C). We want to
define the winding number WC(f ; w0) of f around w0. We define fw0: C ¡!S1; z 7! f(z)¡w0

jf(z)¡w0j
,

and set WC(f ; w0) :=WC(fw0).

2.2 Winding number and K-differentiability

Lemma 2.6. Let U �K be definable, open and non-empty. Let f : U ¡!K be definable and
continuous, and let z02U such that f is K-differentiable at z0. If f 0(z0)=/ 0, then for all sufficiently
small circles C centered at z0, we have WC(f ; f(z0))= 1.

Proof. Write d := f 0(z0)2K�. Since d=/ 0, there is a U1�U with f(z)=/ f(z0) for all z2U nfz0g.
So we can consider h:U1¡!S1; z 7! f(z)¡ f(z0)

jf(z)¡ f(z0)j
. Also set

k(z) := d (z¡ z0)
jdj jz¡ z0j

:

Note that WC(k) = 1 for all circles C around z0. Since f 0(z0) = d, for z sufficiently close to z0,

the element h(z)

k(z)
is close to 1. In particular, picking a sufficiently small circle C around z0, the

function h

k
: C ¡!S1 is not surjective. So WC(h)¡WC(k) =WC

�
h

k

�
=0. We conclude that WC(f ;

f(z0))=WC(h)=WC(k)= 1. �

Write D for the closed unit disk in K, and C for the unit circle, parametrized counter-clockwise.

Main Lemma. Let f :D¡!K be definable and K-differentiable on Int(D). Let w02K n Int(D).
We have

i. If w02/ f(D), then WC(f ; w0)= 0.

ii. If w02 f(D), then WC(f ; w0)> 0.

iii. Each connected component of K n f(C) is either contained in or disjoint from f(D).

Example 2.7. We give an example where ii.+iii. fail for a continuous but not K-differentiable
f . Let f(x; y) := (x; y2). So f(C) is an upper arc in K, and K n f(C) has one definably connected
component, and has winding number 0 around any element in the K n f(C) including those which
lie in f(D).

Proof of the Main Lemma. We first prove i. We can use an homotopy to shrink C continuously,
and as the radius of C tends to 0, the curve f(C) is close to f(0), so fw0 will not be surjective (it
will only cover a small angle). So the winding number of fw0 is 0, hence the result.
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Let us now prove ii. Fix a definably connected and open component X of K n f(C) which
contains w0. Since f(D) is definably connected (because D is and f is continuous and definable),
the point w0 is not isolated in X , so f(D)\X is infinite. Consider the open set U : f¡1(X). We
claim that the set

P := fz 2U : f 0(z)=/ 0g

has dimention 2. Indeed assume for contradiction that P has dimension61. Then in particular Z :=
fz 2U : f 0(z)=0g has codimension 61. But f �Z has differential 0 everywhere, so partitioning Z,
we see that f is locally constant, so takes only finitely many values. So f(U) is finite: contradicting
the previous argument.

The statements of the main lemma are first-order, so we can move to a sufficiently saturated
elementary extension, and consider a generic point z0 in X over ?. Then f is C1 at z0 as an R-
function. Moreover J(f)z0 is invertible (i.e. f 0(z0) =/ 0), then the inverse function theorem for o-
minimal structures gives that f(U) �X contains an open set, whence in particular f(D) \X
contains an open set.

Pick w1 2 f(D) \X be generic, so dim(w1/?) = 2. We claim that f¡1(fw1g) is finite and
that f 0 is non-zero on this set. Assume for contradiction that f¡1(fw1g) is infinite. Let X1 :=
fw2 f(D)\X : f¡1(fwg) is infiniteg. Then dimX1=2 since it contains the generic point w1. So
f : f¡1(fw1g)¡!X1 is surjectve for all such infinite fibers, which is impossible since the dimentin
of f¡1(fw1g) is 60. Assume for contradiction that there is z 2 f¡1(fw1g) with f 0(z) = 0, and
write X2 for the set of such z's. Then again X2 := fw2 f(D)\X : f 0(z)= 0g has dimension 2. By
definable choice, there is a Y1�K such that for all w2X2, there is a y2Y1 with f 0(y)=0 and this
yields a similar contradiction. �

03-02: Lecture 5

Removal of singularities à la Riemann. Let U be open and non-empty, let z02U and let f :
U nfz0g¡!K be definable, K-differentiable and bounded. Then there is a unique w02K such that
the extension of f to U with f(z0)=w0 is K-differentiable.

Proof. Set h(z) := (z ¡ z0) f(z) for z 2 U n fz0g and h(z0) = 0. Since f is bounded, we have
lim0 h=0, so h is K-differentiable on U n fz0g, so by the previous theorem, the function h is K-
differentiable at z0, with h0(z0) = limz0 f . We then extend f by continuity and see that f is K-
differentiable at z0. �

Using the previous result and the maximum principle, one can prove the following:

Theorem 2.8. If f :U ¡!K is definable and K-differentiable, then f 0 is also K-differentiable.

3 Isolated singularities
We start with an o-minimal fact:

Fact Let U be open and non-empty. Let g: U ¡!K be definable, let z 2 U . Then there is a
neighborhood V of z such that g(V \U) is not dense in K.

Proof. Assume for contradiction that this is not the case. So for all w2K n f(fz0\U g) there is a
definable path : [0; 1]¡!K nfz0g converging to z0 such that f �  tends to w. So (; f � ) tends
to (z0; w). So fz0g� (K n fz0 g)� f �U n fz0g n f . But this is the frontier of a set of dimension 2,
whereas fz0g� (K n fz0 g) has dimension 2: a contradiction. �

We fix an open set U , a point z02U and a definable and K-differentiable f :U n fz0g¡!K.
Assume that f is not constant around z0. We define the order Ordz0(f)2Z of f at z0 as follows.
Recall that for sufficiently large r 2R>, the number WCr(f ; 0) is constant (where Cr is the circle
around z0 of radius r). We then define Ordz0(f) to be that integer.

Case 1: z0 is a removable singularity and f(z0)=0. Write f for the continuation on U .
We have 02Dr :=Conv(Cr), whence

Ordz0(f)> 0;
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by a previous theorem.

Case 2: z0 is a removable singularity and f(z0)=/ 0. Again write f for the continuation
on U . If f(z0)=/ 0, then we claim that

Ordz0(f)=0:

Indeed shrinking Cr (hence Dr) sufficiently, we can obtain that f(z0) lie outside of Dr.
Case 3: z0 is not removable. In particular f must be unbounded near z0. We claim that

lim
z0
jf j=+1: (3.1)

Let V be a neighborhood of z0, let w02K and r02R> such that

jf(z)¡w0j>r0 (3.2)

for all z 2V n fz0g. Set
h(z) := 1

f(z)¡w0

for all z 2 V n fz0g. The function h is K-differentiable, and bounded by (3.2). So z0 is a
removable singularity for h. So limz0h2K. We conclude since f is unbounded near z0 that
limz0 h=0, whenc jlimz0 f j=+1.

Let us show that

Ordz0(f)< 0:

Set

�(z) := 1
f(z)

on a [épointé] neighborhood X of z0. By (3.1), we can extend � to z0 by setting �(z0) :=0.
Now we know that WCr(�; 0)> 0, whence WCr(f ; 0)=0 for all sufficiently small r2R> (i.e.
whenever Cr�X).

Theorem 3.1. Set n :=Ordz0(f). There is a definable and K-differentiable g:U¡!K with g(z0)=/
0 such that

f(z)= g(z) (z¡ z0)n

for all z 2U n fz0g.

Proof. Let r 2R> be sufficiently small, so n=WCr(f ; 0). Note that WCr((id¡ z0)n; 0) = n, so
setting g := f

(id¡ z0)n
on U n fz0g, we have WCr(g; 0)=0. By the previous trichotomy, the function

g can be extended to z0 with g(z0)=/ 0; hence the result. �

Corollary 3.2. Assume that f is K-differentiable at z0 and that Ordz0(f)> 0. Then Ordz0(f) :=
min fn2Z : f (n)(z0)=/ 0g where f (n)(z0)=/ 0 means that there is an analytic continuation of f such
that . . .

Corollary 3.3. For non-standard � 2 R>N, �the� function z 7! z� cannot be defined as a K-
differentiable map on a neighborhood of 0.

4 Taylor series

Let U �K be a non-empty open definable set, and let z02U .
From the proof of Theorem 3.1, we deduce:

Theorem 4.1. Let f :U ¡!K be definable and K-differentiable. Then

8n2N;Ordz0

 
f ¡

X
k=0

n
f (k)(z0)

k!
(id¡ z0)k

!
>n:
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If z0 is a pole, then

8n>Ordz0(f);Ordz0

0@f ¡
X

k=Ordz0(f)

n

ak (id¡ z0)k
1A> 0

for a fixed sequence (aOrdz0(f); : : : ).

Corollary 4.2. The map

f 7¡!
X
k>0

f (k)(z0)
k!

(z¡ z0)k

from germs at z0 of K-differentiable and definable functions to power series in K[[z ¡ z0]] is
injective.

Theorem 4.3. Every definable K-differentiable function f :K ¡!K is a polynomial.

Theorem 4.4. If f :K nfz0;:::; zng¡!K is definable and K-differentiable, then f is a polynomial.

5 Some model theory
Proposition 5.1. Let (ft)t2¡ be a definable family of K-differentiable functions K ¡!K, then
there is an N 2N such that each ft has degree 6N.

Question 2. Let (ft)t2¡ be a definable family of polynomial functions on D. Is there a uniform
bound on the degree of ft?

Example 5.2. [by A. Piekosz] Let (an)n2N be an arbitrary sequence of complex numbers in D /1 2

with absolute value 6 /1 2. Define

f :D /1 2�D /1 2 ¡! C

(z; w) 7¡!
X
n>1

zn (w¡ a1) � � � (w¡ an):

This is definable in Ran, and for all n2N, the function f(¡; an) is a polynomial of degree n. But
for w2/ fan :n2Ng the function f(¡;w) is not a polynomial, so this doesn't give a negative answer
to the previous question.

Proposition 5.3. Let (ft)t2¡ be a definable family of K-differentiable functions on Ut n fztg for
open sets Ut3 zt; t2¡. Then there is an N 2N, such that for all t2¡, either ft is locally constant
around zt or jOrdzt(ft)j6N.

Proposition 5.4. Let (ft)t2¡ be a definable family of K-differentiable functions on Ut n fztg for
open sets Ut3 zt; t2¡. For t2¡, let X

k>¡N
ak;t(zt) (z¡ zt)k

be the Laurent series associated to ft, where N is as in the previous proposition. Then the function

t 7! ak;t(zt)
is definable.

Let us now go back to the classical setting K =C. Let C be a simple closed curve and let f :
U �C ¡!K have finitely many residues z1; : : : ; zn in Int(Hull(C)). Recall that resz(f)=a¡1(z) in
the previous notations. We have 1

2� i

R
C
f = resz1(f)+ � � �+ reszn(f).

So if (ft)t2¡ is as above and (Ct)t2¡ is a definable family of simple closed curves, and Ft�
Conv(Ct) is finite and uniformly definable, then the function

t 7¡!
Z
Ct
ft

is also definable.
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Theorem 5.5. If f :Kn¡!K is definable and K-differentiable, then f is polynomial.

Proof. For all a 2Kn¡1, the function f(a;¡) is polynomial by the one variable corresponding
result. By o-minimality, the degrees of corresponding polynomials when a ranges in Kn¡1 are
bounded by some d2N. So f(x; y)=

P
k=0
d ak(x) yk. Loooking at @f

@y
, we can conclude by induc-

tion. �

In fact, we have a result from Palais (1978) that for any uncountable field F and f :F n¡!F
which is polynomial in each variable, the function f is in fact polynomial.

6 Behavior at boundary points
Assume that f :U ¡!K is definable and K-differentiable on a non-empty open set U �K, and let
z02 @U such that U \V is simply connected for some neighborhood V of z0. Then limz0 f exists
in R[f1g. Indeed recall that for f :D¡!K definable, and non-constant and K-differentiable on
Int(D), then f inv(w) is finite on @D. Indeed assume that f as infinitely many limit points around
z0. Then sufficiently close to z0, one can also arrange that f is injective and that it have non-zero
derivative. So the inverse map of the restriction will be K-differentiable on an open set. Then f inv

sends an infinite subset of D(w) to z0, so f inv must be constant: a contradiction.

Question 3. Assume that a definable f :D n ([¡ /1 2; /1 2]�f0g)¡!C is holomorphic and bounded.
Does f extend to D ? (preserving boundedness).

7 Definable complex manifolds and analytic sets
We now work with R=R, soK=C. Apparently the results should still be valid in the more general
context.

Definition 7.1. A definable C-manifold is

i. a definable M �Rd,

ii. a finite cover by definable subsets Ui; i2 I,
iii. For all i 2 I, a definable bijection �i:Ui¡! Vi into an open subset Vi of C such that the

transition maps are holomorphic.

Note that the transition maps are definable.

Example 7.2. Open subsets of Cn, graphs of definable holomorphic maps Cn�U ¡!C, as well
as the projective spaces are definable manifolds. If � is a discrete sugroup of (C;+), then the
quotient C/� can be equipped with a C-manifold chart by realizing this within C7.1. For instance,
take �=2� iZ, and define C/� to be fz2C : 06 Im(z)<2�g. We then give the two usual charts.
If we are working in Ran;exp in the language, then the complex exponential is definable on small
strips on C, so we can realize C/� as a definable �holomorphic� copy of C�.

Fact: Every compact analytic manifold is definably biholomorphic (in the sense of manifolds)
to a definable C-manifold.

Definition 7.3. Let M;N definable C-manifolds. A definable holomorphic function M ¡!N is
a definable function f :M ¡!N which is holomorphic through charts.

Definition 7.4. A definable submanifold is a definable subset X �M which is an R-submanifold,
for which moreover the tangent space at each a is C-linear.

The only compact definale submanifolds of C are the finite sets.

7.1. this speaks to Lou's remark being relevant: can we not define this abstractly rather than always having to
find a embedded representation?
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Theorem 7.5. Let M be a definable C-manifold. If X �M is a definable submanifold, then it has
a natural structure of definable C-manifold, and the inclusion X ,!M is a definable holomorphic
function.

Definition 7.6. Let M be a definable C-manifold. A definable analytic subset of M is a definable
closed X �M such that for all z 2X, there are a definale neighorhood Uz of z and finitely many
definable and holomorphic functions f1; : : : ; fn:Uz¡!C with

X \Uz=Z(f1; : : : ; fn)= fy : f1(y)= � � �= fn(y)= 0g:

It can be showed that in fact X can be covered by finitely many such sets Uz and functions.

Example 7.7. Algeraic varieties in Cn are definable analytic subsets of C. If M is a definable
compact C-manifold for Ran, then every analytic subset of M is a definable analytic subset of M
(again in Ran).

(By Chow's theorem, every analytic subset of Pn(C) is an algebraic variety.)

8 Removal of singularities

The basic problem: M is a definable C-manifold, we have a definable open U �M , and a definable
analytic subset X of U as per Definition 7.6. When is the closure ClM(X) of X in M an analytic
subset of M? So did we �add singularities� by taking the closure?

Example 8.1. Let M =C and take U to be the unit disk. So U is a definable analytic subset of
itself. But the closed disk is not an analytic subset of C.

8.1 Main removal of singularities results
We recall a classical result of removal of singularities:

Remmert-Stein theorem. Let N be a C-manifold, let E�N be a C-analytic subset, and set V :=
N nE. If Y �V is irreducible analytic subset, and dimC(Y )>dimC(E), then ClN(Y ) is an analytic
subset of N.

A bunch of o-minimal ROS results:

1. Assume that dimR(Fr(X \ V ) \ V )6 dimR(X \ V )¡ 2 for all non-empty definable open
V �M . Then ClM(X) is an analytic susbet of M .

2. Let E �M be a definable analytic subset with U =M nE. Then ClM(X) is an analytic
susbet of M .

A corollary of 1 is that

Corollary 8.2. If fXt : t2¡g is a definable family of subsets of a definable C-manifold M, then
the set ft2¡ :Xt is a definable analytic subset of M g is definable.

Proof. Set RegC(Xt)= fx2Xt : the germ of Xt at x is a the germ of a C-submanifold of M g for
each t2¡. Each RegC(Xt) is a locally analytic definable subset of M . The set Xt is an analytic
subset of M if and only if Xt is closed, if RegC(Xt) is dense inXt, and if dimR(Fr(RegC(Xt)\V ))6
dimR(RegC(Xt)\V )¡ 2 for all non-empty definable open V �M . �

It follows that we have a:

Definable Chow theorem. If X �Cn is a definable analytic subset, then X is algebraic.

Corollary 8.3. If (Xt)t2¡ is a definable family of subsets of Cn, then ft2¡ :Xt is algebraicg is
definable.
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Exercise 8.1. Show that this result fails for real-algebraic (definable) subsets in o-minimal structures.

9 Moduli spaces of elliptic curves

Assume that we have a lattice ��=�1Z+�2Z where �=(�1;�2) is anR-basis ofC. Write F� :=C/¡�
with its definable structure of C-manifold. Then we saw that F� is isomorphic to an elliptic curve
E� �P1(C).

We may assume that � =(� ; 1) where � 2H= fz 2C : Im(z)> 0g. Recall that E� and E� 0 are
isomorphic if and only if there is a g 2 SL2(Z) with � 0= g � � (where � is the standard action of
SL2(Z) onH). Moreover, there is a holomorphic and transcendental surjective map j:H¡!C with

8� ; � 02H; (j(�)= j(� 0)()SL2(Z) � � = SL2(Z) � � 0()E� 'E� 0)

where the isomorphism is as abelian varieties, analytic manifolds. The function j is called the
j invariant.

9.1 Fundamental domain for j
Set

F = fz 2H : (Re(z)2 [¡ /1 2; 0)^ jz j> 1)_ (Re(z)2 [0; /1 2)^ jz j> 1)g:

Then each orbit of SL2(Z) has excatly one representative in F . It follows that j � F :F ¡!C is
still surjective (and injective).

Theorem 9.1. The function j �F is definale in Ran;exp.

Proof. Consider the function e(z) := exp(2 i � z). Then e �F is definable in Ran;exp by previous
results. Now on any bounded part B of F , the function j is definable on B \ F in Ran. For
z = x + i y 2 Cl(F ), we have e(z) = exp(2 � i x) � exp(¡2 � y), and we see that e(Cl(F )) is the
punctured disk D� centered on 0. Recall that in particular j(z + 1) = j(z) for all z 2H, and
e(z+1)= e(z) as well. So we can factor j by e and get an analytic map j~:D�¡!C with

j �Cl(F )= j~� (e �Cl(F ))

Fact: limjz j!+1 jj j=+1, so limz!0 jj~j=+1, i.e. 0 is a pole of j~, and we can write j~= f

g
where

f ; g are analytic, definable in Ran. So j �F is definable in Ran;exp. �
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